The Riemann Hypothesis for Certain Integrals of Eisenstein Series

نویسندگان

  • Jeffrey C. Lagarias
  • Masatoshi Suzuki
چکیده

This paper studies the non-holomorphic Eisenstein series E(z, s) for the modular surface PSL(2,Z)\H, and shows that integration with respect to certain non-negative measures μ(z) gives meromorphic functions Fμ(s) that have all their zeros on the line R(s) = 1 2 . For the constant term a0(y, s) of the Eisenstein series the Riemann hypothesis holds for all values y ≥ 1, with at most two exceptional real zeros, which occur exactly for those y > 4πe = 7.0555+. The Riemann hypothesis holds for all truncation integrals with truncation parameter T ≥ 1. At the value T = 1 this proves the Riemann hypothesis for a zeta function Z2,Q(s) recently introduced by Lin Weng, associated to rank 2 semistable lattices over Q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Riemann Hypothesis Condition for Metaplectic Eisenstein Series

Let A be the adeles of the function eld Fq (T). If E(g; s) is the Eisenstein series associated with the spherical vector in the principal series representation of the double cover of GL2(A), then the Fourier coeecients (Whittaker functions) of E(g; s) have an Euler product and satisfy a `Riemann Hypothesis' condition. Namely, the zeros occur only on the line <(s) = 0. These Whittaker functions ...

متن کامل

On the length of global integrals for

In this paper we study global integrals defined on the group GLn(A). We prove a vanishing result for certain integrals which involve Speh representations and certain Eisenstein series, and which satisfies a certain dimension equation. This is part of a general Conjecture which states that a global nonzero integral which satisfies a dimension equation involves at most three nontrivial representa...

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Báez-Duarte’s Criterion for the Riemann Hypothesis and Rice’s Integrals

Criterion for the Riemann hypothesis found by Báez-Duarte involves certain real coefficients ck defined as alternating binomial sums. These coefficients can be effectively investigated using Nörlund-Rice’s integrals. Their behavior exhibits characteristic trend, due to trivial zeros of zeta, and fading oscillations, due to complex zeros. This method enables to calculate numerical values of ck f...

متن کامل

Spectral analysis and the Riemann hypothesis

The explicit formulas of Riemann and Guinand-Weil relate the set of prime numbers with the set of nontrivial zeros of the zeta function of Riemann. We recall Alain Connes’ spectral interpretation of the critical zeros of the Riemann zeta function as eigenvalues of the absorption spectrum of an unbounded operator in a suitable Hilbert space. We then give a spectral interpretation of the zeros of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008